A joined-up approach to sustainable packaging

Our series of web seminars covers every key topic you need to know about. Taking place from March 15 to 25.
Mechanical recycling of polyamides in multilayer film structures

Webinar on March 18 with Dr. Rolf-Egbert Gruetzner and Dr. Roland Bothor
Your hosts for today

Dr. Rolf-Egbert Gruetzner
BASF SE
Technical Support
Ultramid Extrusion Polyamides
rolf-egbert.gruetzner@basf.com
+49 621 60-48528

Dr. Roland Bothor
Institute cyclos-HTP GmbH
bothor@cyclos-htp.de
+49 (0) 241 949 00 31

Nina Osten
BASF SE
Communications Polyamides
nina.a.osten@basf.com
+49 152 54874615
Welcome to our session!
Before we start… Webex housekeeping

- Please **provide your full name**: Do not appear as a “Dial-in User”

- We’ll put you all on **mute**

- Ask a question via the chat or Q&A function (to everyone) or “raise a hand,” so we can unmute you

- All questions will be answered **after** the session

- Please **turn off** your video

- We recommend to use **VoIP** audio connection ("call using computer function")

- Please note that this session is going to be **recorded** (Q&A will not be published)
Mechanical Recycling of PE/PA Multilayer Film Waste: Opportunities & Limits (Part 2)

Dr. Rolf-Egbert Gruetzner, BASF SE
Webinar March 18th, 2021
Review of Part 1 “Mechanical recycling of PE/PA6 multilayer film waste”

Project with Institute Cyclos-HTP (New results on PE/PA6 multilayer film waste)

Is mechanical recycling of PE/CoPA multilayer film any different?

How is the mechanical recycling of structures with both PA and EVOH?

Outlook
Agenda

- Review of Part 1 “Mechanical recycling of PE/PA6 multilayer film waste”
- Project with Institute Cyclos-HTP (New results on PE/PA6 multilayer film waste)
- Is mechanical recycling of PE/CoPA multilayer film any different?
- How is the mechanical recycling of structures with both PA and EVOH?
- Outlook
What has been investigated in Phase 1 (PE/PA6 multilayer film waste)?

- Multilayer film waste (PA6, up to 34%)
- Regranulation (incl. temperature & blend variation)
- Film manufacturing 1 (mono blown film)
- Film manufacturing 2 (multilayer blown film)
- Data comparison to PE references (PIW PE qualities)

Joint project: Mechanical recycling of PE/PA multilayer films, studies & webinars BASF SE; 2019-2021
PA concentrations < 10% are dispersible in a polyethylene stream w/o using compatibilizers

PA/PE pellet mix (PA6: 5-8%)
- NO compatibilizer
- Temperature range 215-240°C
- NO additional compounding
- NO additional drying

Direct processing of regranulate to 2nd blown film

Transparent films showing reasonable mechanical performance (mono-/ multilayer films)

Mechanical recycling of PE/PA multilayer films, studies & webinars BASF SE; 2019-2021
Compatibilization offers additional options for utilizing PA/PE waste blends with PA concentrations > 10% in a polyethylene stream.

PA/PE mix pur (pellet, 20% PA6)

Compatibilizer added as dry blend during 2nd blown film process

PA/PE mix, pre-compatibilized (pellet, 20% PA6)

Direct processing of pre-compatibilized PIR during 2nd blown film process

Monolayer PA/PE blown film

Transparent films showing reasonable mechanical performance (mono-/multilayer films)

Mechanical recycling of PE/PA multilayer films, studies & webinars BASF SE; 2019-2021
Agenda

- Review of Part 1 “Mechanical recycling of PE/PA6 multilayer film waste”
- Project with Institute Cyclos-HP (New results on PE/PA6 multilayer film waste)
- Is mechanical recycling of PE/CoPA multilayer film any different?
- How is the mechanical recycling of structures with both PA and EVOH?
- Outlook
1. Short introduction to the cyclos-HTP institute (CHI)
2. The CHI Standard for the assessment of recycling compatibility
3. Project targets and test program
4. Results of regranulation and production of recyclate blends
5. Results of Injection Moulding and Blown Film application tests
6. Summary and Outlook
Agenda

1. Short introduction to the cyclos-HTP institute (CHI)
2. The CHI Standard for the assessment of recycling compatibility
3. Project targets and test program
4. Results of regranulation and production of recyclate blends
5. Results of Injection Moulding and Blown Film application tests
6. Summary and Outlook
The Institute cyclos-HTP with headquarter in Aachen was founded in May 2014 as a company for the classification, evaluation and audit of recyclability for packaging and goods, as well as research and development in this field.

CHI, was the first expert organization who has draft and implement a fully transparent assessment procedure for packaging - based on scientific principles and practical experience in recycling.
Core competences of the Institute cyclos-HTP

- **Recyclability Assessments** for packaging for distributing companies
 - individual certification/ group certification
 - Performing round about 1,500 recyclability assessments per year (brand owners, packaging manufacturers) for all material types plastic, fibre-based materials, metal and glass
- **Workshops** for packaging manufacturers, brand owners and traders
- **Projects for D4R Packaging Optimizing** (stand-up pouches *Mondi*, freezer bag *Frosta*):
- **CHI as Testing Instance** for different packaging manufacturers (testing of packaging before market introduction)
- **Product Range Screening** to determine the status quo of recyclability (for packaging manufacturers, brand owners and traders), taking international markets and actual developments into account
- **Basic Research** (Regularities of NIR sorting, development of analysis and simulation methods)
- **IT Developments:**
 - Recyclingkompass DSD ‘*Der Grüne Punkt*’
 - CHIRA (CHI Recyclability Assessment), completion mid of 2021
1. Short introduction to the cyclos-HTP institute (CHI)

2. The CHI Standard for the assessment of recycling compatibility

3. Project targets and test program

4. Results of regranulation and production of recyclate blends

5. Results of Injection Moulding and Blown Film application tests

6. Summary and Outlook
Definition of Recyclability

1. Recycling...

- Recyclate
- Regenerate
- Blends

Reference area for Recyclability according to the cyclos-HTP-classification* (substitution of the corresponding virgin material)

- Intrusion moulding
- Agglomerates for feedstock recycling
- Fluff mid-caloric

- Physical processes
- Chemical modification
- Energetic use
Definition recyclability / Balance frame

Assessment Basis
Rate of substitution of corresponding virgin material by recycled secondary raw material.

Recyclability …
Individual *gradual* suitability of a packaging or product to *factually* substitute material-identical virgin material in the post-use phase; “factually”: collection and processing structures in industrial scale are available.*

Conformity of Packaging Design with Functional Requirements of established Recycling Processes

National differentiation of Recyclability, as long as structures not harmonized

→ **Certificate of Recyclability**
→ **Conformity in the form of a Supplier Declaration acc. to DIN EN ISO 14021**

CHI: Verification and examination of recyclability
Main Aspects and Definitions

Reference Processes
Relevant processes in the corresponding Recycling Path incl. Recyclate Applications

Reference Material
Commercial PCR recyclate commonly used for the same reference applications in the recycling path

Sample
Packaging/Material containing a component with an unknown recycling compatibility
Assessment of Recycling Blends against Reference material:

CHI5
“Realistic Scenario” for the concentration of a packaging material in the recycling stream
= 5% Sample + 95% Reference → Compatibility of Packaging or Material?

CHI30
“Worst Case Scenario” for the concentration of a packaging material in the recycling stream
= 30% Sample + 70% Reference → 100% Recyclability of Packaging?

REF
Commercial PCR Recyclate from the recycling stream
Agenda

1. Short introduction to the cyclos-HTP institute (CHI)
2. The CHI Standard for the assessment of recycling compatibility
3. Project targets and test program
4. Results of regranulation and production of recyclate blends
5. Results of Injection Moulding and Blown Film application tests
6. Summary and Outlook
Appendix 3 of the German ZSVR Minimum Standard provides the basis for determining incompatibilities. **PA barriers are currently listed as “Incompatibility”** in the packaging group “Film and LDPE”.

For any **deviating determination** (PA not negatively affect recyclability), **individual evidence** must be provided.

- Effects of PA concentration, film structure and tie layer resins on recyclability are not considered
- Can the recycling compatibility of PA be improved with a compatibilizer agent incorporated as blend in PE?

Targets of this project:

- Investigation of the effects of PA6 (most critical PA grade) on the relevant properties of recyclates in LDPE film recycling
 - PA6 is incorporated as **coextruded layer with tie layers** in a LLDPE/LDPE film
 - Additional tests of films with PA6 and a commercial **compatibilizer** blended in PE
- Tests of the reference applications for LDPE recyclates:
 - Blown films
 - Injection moulding

➔ **Assessment of PA6 as “Recycling Compatible” or “Recyclable” in LDPE films**
 (by demand with use of a compatibilizer)
Test Phase 1 – Production of Sample Blown Films – Raw materials

Multilayer Blown Films produced at Windmöller & Hölscher

7 layer film structures:

FB0 – PE / PE / PE / PE / PE / PE / PE (100 µm)
FB1 – PE / Tie layer / PA6 / Tie layer / PA6 / Tie layer / PE
FB2 – PE + Comp / Tie layer / PA6 / Tie layer / PA6 / Tie layer / PE + Comp

“Recycling-critical” materials to be tested:

LDPE-based film with 30% PA6 and 15% tie layer resin *
LDPE-based film with 15% PA6 and 7.5% tie layer resin *
LDPE-based film with 30% PA6 and 15% tie layer resin * and 5% Compatibilizer **

* Maleic anhydride grafted PE (Standard grade for PA/PE coextrusion)
** Maleic anhydride grafted PE (high MAH content)
Agenda

1. Short introduction to the cyclos-HP institute (CHI)
2. The CHI Standard for the assessment of recycling compatibility
3. Project targets and test program
4. Results of regranulation and production of recyclate blends
5. Results of Injection Moulding and Blown Film application tests
6. Summary and Outlook
Morphology of Regranulate pellets after Regranulation on a NGR line

Pre-compatibilization generates a more homogeneous morphology in comparison with 30% PA6 without compatibilizer.

Reflection/Fluorescence microscopy (CLSM) pictures with kind permission by Dr. R.-E. Gruetzner, BASF SE 02/2020
Composition of Recyclate Samples

<table>
<thead>
<tr>
<th>CHI std.</th>
<th>PA6</th>
<th>Tie layer</th>
<th>Comp</th>
<th>Recy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100%</td>
</tr>
<tr>
<td>CHI5</td>
<td>1.5%</td>
<td>0.8%</td>
<td>0.0%</td>
<td>95%</td>
</tr>
<tr>
<td>CHI5</td>
<td>1.5%</td>
<td>0.8%</td>
<td>0.3%</td>
<td>95%</td>
</tr>
<tr>
<td>CHI30</td>
<td>5.0%</td>
<td>2.5%</td>
<td>0.0%</td>
<td>70%</td>
</tr>
<tr>
<td>CHI30</td>
<td>5.0%</td>
<td>2.5%</td>
<td>0.8%</td>
<td>70%</td>
</tr>
<tr>
<td>CHI30</td>
<td>10.0%</td>
<td>5.0%</td>
<td>0.0%</td>
<td>70%</td>
</tr>
<tr>
<td>CHI30</td>
<td>10.0%</td>
<td>5.0%</td>
<td>1.7%</td>
<td>70%</td>
</tr>
</tbody>
</table>

* RECY - Reference Recyclate: LDPE-based PCR Recyclate

Extrusion parameters:
- Extruder set temperature (Head) = 210°C
- Melt pressure = 50 – 60 bar
- Vacuum degassing after 6 of 8 zones
- Melt pump
1. Short introduction to the cyclos-HTP institute (CHI)
2. The CHI Standard for the assessment of recycling compatibility
3. Project targets and test program
4. Results of regranulation and production of recyclate blends
5. Results of Injection Moulding and Blown Film application tests
6. Summary and Outlook
Injection Moulding Application of Recyclate Blends

Injection Moulding Application - Mechanical Tests

- **Tensile Modulus (E_t)**
- **Tensile Strength (σ_m)**
- **Tensile Stress at Break (σ_b)**
- **Elongation at Break (ε_b)**
- **Charpy Impact strength (acU)**

100% Level = Reference PCR PE Recyclate

- **PE Reference**
 - PA: 0% Comp.: 0% Recy: 70%
 - PA: 2% Comp.: 0% Recy: 95%
 - PA: 5% Comp.: 0% Recy: 70%
 - PA: 10% Comp.: 0% Recy: 70%
 - PA: 10% Comp.: 1.5% Recy: 67%

- **Injection Moulding Application**
 - PA: 0% PA: 2% PA: 5% PA: 10% PA: 10%
 - Comp.: 0% Comp.: 0% Comp.: 0% Comp.: 1.5%
 - Recy: 70% Recy: 95% Recy: 70% Recy: 67%
Application Test for Blown Films (Examples)

- Recyclate materials not dried!
- 50% virgin LD/LLDPE added for each film (Standard in industry)
Blown Film Application Tests – Mechanical and Sealing Properties

Blown Films made of 50% Recyclates and 50% virgin PE - Mechanical and Sealing properties

Dart Drop
Tensile Test MD
Tensile Test CD
Elongation @ break MD
Elongation @ break CD
Sealing strength

100% Level = Film with 50% Reference PCR PE Recyclate and 50% virgin PE

PE Reference

PA: 0%
Comp.: 0%
Recy: 70%

PA: 5%
Comp.: 0%
Recy: 95%

PA: 5%
Comp.: 0.8%
Recy: 70%

PA: 10%
Comp.: 0%
Recy: 70%

PA: 10%
Comp.: 1.5%
Recy: 67%
Blown Film Application Tests – Seam Tightness Test (CHI-C8-BFPE)

1. Films sealed with seam width of 2 - 4 mm
2. Filled with 1.3 L of water (with 16 cm seam length and 20 cm fill height)
3. Test duration: min. 10 minutes
4. Count the number of drops per minute due to leakages in the seam
5. Test is passed with < 2 drops per minute
Agenda

1. Short introduction to the cyclos-HTP institute (CHI)
2. The CHI Standard for the assessment of recycling compatibility
3. The test program
4. Results of regranulation and production of recyclate blends
5. Results of Injection Moulding and Blown Film application tests
6. Summary and Outlook
Individual evidence for the deviating determination of Polyamide 6 based on test results according to CHI standard test method CHI-C8-PEF-1:

Polyamide 6 (PA6) is “Recycling Compatible for PE Film Recycling” in recyclates for injection moulding and blown film applications:
• in combination with a MAH-grafted PE* as tie layer resin in a ratio of ≥ 0.5 g per g PA;
• tested with $\leq 30\%$ by weight of PA6 in coextruded polyethylene films, based on LDPE and LLDPE
 • no compatibilizing agent necessary for the recycling compatibility

Packaging films ** with a PA6 barrier are “Fully Recyclable”:
• in combination with a MAH-grafted PE* as tie layer resin in a ratio of ≥ 0.5 g per g PA;
• the film structure must contain a Compatibilizer like “Dow Fusabond E226” (or comparable) in a ratio ≥ 0.15 g per g PA
• tested with $\leq 30\%$ by weight of PA6 in coextruded polyethylene films, based on LDPE and LLDPE,

* Maleic anhydride content suitable for PA/PE coextrusion
** Structures without printing inks or other components that affect recyclability
Classification of Materials and Packaging structures for Recycling

<table>
<thead>
<tr>
<th>Status</th>
<th>Categorization of PA6 according to CHI standard</th>
<th>CHI Assessment of a Packaging structure</th>
<th>Material (PA6) according to ZSVR Minimum Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>CAT 3 (PA in any structure)</td>
<td>Not recyclable (0%)</td>
<td>Contaminant / Incompatible (‘PA layers’)</td>
</tr>
<tr>
<td>Future</td>
<td>CAT 2 (PA6 layers with tie layer)</td>
<td>Recyclable (≤ 90%) **</td>
<td>Recycling compatible (‘PA6 layers with tie layer’) *</td>
</tr>
<tr>
<td></td>
<td>Valuable material (PA6 layers with tie layer and Compatibilizer)</td>
<td>Fully Recyclable (≤ 100%) ** (Structure with Compatibilizer)</td>
<td></td>
</tr>
</tbody>
</table>

* Application started for the next Minimum Standard 2021; final wording not yet agreed

** Structure without printing inks or other components that affect recyclability
Thank you for your Attention!

Institute cyclos-HTP GmbH
Maria-Theresia-Allee 35
52064 Aachen
info@cyclos-htp.de
www.cyclos-htp.de

Contact:
Sandra Beckamp
beckamp@cyclos-htp.de

Dr. Joachim Christiani
christiani@htp.eu

Dr. Roland Bothor
bothor@cyclos-htp.de
Agenda

- Review of Part 1 “Mechanical recycling of PE/PA6 multilayer film waste”
- Project with Institute Cyclos-HTP (New results on PE/PA6 multilayer film waste)
- Is mechanical recycling of PE/CoPA multilayer film any different?
- How is the mechanical recycling of structures with both PA and EVOH?
- Outlook
What has been done in phase 2 (Implementation of CoPolyamides)?

- Original films: PE/ CoPA Multilayer films with 20% Copolyamides
- Regranulation (S Gran 95, NGR, Austria)

- Morphologies of regranulates analyzed
- Monolayer blown films (40µm) made from regranulates blends in semi-tech scale; dilution series with and w/o compatibilizer (during blown film process)
- Visual & morphological evaluation; analysis of mechanical properties of monolayer films
Film structures (100µm total)

- Trial C: C40L/tie/PE/PE/PE/PE/PE/PE/PE/PE/PE (20% Ultramid® C40L**)
- Trial F: F38/tie/PE/PE/PE/PE/PE/PE/PE/PE/PE/PE (20% Ultramid® F38***)

** Ultramid® C40L = high viscosity (RV= 4,0), lubricated PA 6/6.6, Tm: 189°C
*** Ultramid® F38 = high viscosity (RV = 3,8), non- additivated special CoPA, Tm: 199°C
Morphologies I - Comparison of regranulates

Regranulate A* (B40LN)
Regranulate C* (C40L)
Regranulate F* (F38)

* 20% of different polyamides in all regranulates, no compatibilizer
Recipe overview I – Dilution series (w/o compatibilizer)

<table>
<thead>
<tr>
<th>Trials</th>
<th>Reg A*(%/%PA6)</th>
<th>Reg C**(%/%C40L)</th>
<th>Reg F***(%/%F38)</th>
<th>Reg PE****(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>1.1</td>
<td>100 / 20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.1</td>
<td>50 / 10</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>37.5 / 7.5</td>
<td>-</td>
<td>-</td>
<td>62.5</td>
</tr>
<tr>
<td>3.3</td>
<td>25 / 5</td>
<td>-</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>2.5</td>
<td>-</td>
<td>100 / 20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.8</td>
<td>-</td>
<td>50 / 10</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>3.9</td>
<td>-</td>
<td>37.5 / 7.5</td>
<td>-</td>
<td>62.5</td>
</tr>
<tr>
<td>3.10</td>
<td>-</td>
<td>25 / 5</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>2.2</td>
<td>-</td>
<td>-</td>
<td>100 / 20</td>
<td>-</td>
</tr>
<tr>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>75 / 15</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>50 / 10</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>37.5 / 7.5</td>
<td>62.5</td>
</tr>
<tr>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>25 / 5</td>
<td>75</td>
</tr>
</tbody>
</table>

* 20% B40LN
** 20% C40L
*** 20% F38
**** Referenz PE Reg

All blends mixed on blown film machine as s&p directly!!

Processing information (for CoPA):
- Weber 30 air cooled blown film,
- 30mm screw diameter, L/D = 25
- 50mm die diameter
- 40 µm total thickness
- Temperature profile:
 200°C/210°C/220°C/220°C
- Melt temperature 215-220°C

For PA6 trials 20°C higher set-up
Morphologies II – Monolayer films (Dilution w/o compatibilizer)

7.5% B40LN (# 3.2) 10% C40L (# 3.8) 10% F38 (# 3.5)

5% B40LN (# 3.3) 5% C40L (# 3.10) 7.5% F38 (# 3.6)
Comparison of mechanical properties in machine direction (MD) (Dilution w/o compatibilizer)

All components mixed as salt & pepper blends prior to blown film process directly!!
Comparison of mechanical properties in transversal direction (TD) (Dilution w/o compatibilizer)

Monolayer film of regranulate blends (TD)

<table>
<thead>
<tr>
<th></th>
<th>Referenz PE 1.0</th>
<th>2.5 (20%C40L)</th>
<th>3.2 (7,5%B40LN)</th>
<th>2.2 (20%F38)</th>
<th>3.9 (7,5%C40L)</th>
<th>3.6 (7,5%F38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRENGTH</td>
<td>100</td>
<td>112</td>
<td>111</td>
<td>122</td>
<td>101</td>
<td>139</td>
</tr>
<tr>
<td>ELONGATION (BREAK)</td>
<td>100</td>
<td>96</td>
<td>92</td>
<td>101</td>
<td>103</td>
<td>97</td>
</tr>
<tr>
<td>E-MODULUS</td>
<td>54</td>
<td>76</td>
<td>81</td>
<td>67</td>
<td>70</td>
<td>89</td>
</tr>
<tr>
<td>PUNCTURE (STRENGTH)</td>
<td>88</td>
<td>83</td>
<td>76</td>
<td>97</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ELMENDORF TEAR</td>
<td>76</td>
<td>96</td>
<td>92</td>
<td>101</td>
<td>101</td>
<td>111</td>
</tr>
</tbody>
</table>

All components mixed as salt & pepper blends prior to blown film process directly!!
Recipe overview II – Dilution series (with compatibilizer)

<table>
<thead>
<tr>
<th>Trials</th>
<th>Reg A*(%/%PA6)</th>
<th>Reg C**(%/%C40L)</th>
<th>Reg F***(%/%F38)</th>
<th>Reg PE****(%)</th>
<th>Comp F# (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>1.4</td>
<td>95 / 19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>4.2</td>
<td>50 / 10</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>1.10</td>
<td>50 / 10</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>4.3</td>
<td>37.5 / 7.5</td>
<td>-</td>
<td>-</td>
<td>57.5</td>
<td>5</td>
</tr>
<tr>
<td>4.4</td>
<td>25 / 5</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>5</td>
</tr>
<tr>
<td>4.10</td>
<td>-</td>
<td>97 / 19</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4.12</td>
<td>-</td>
<td>50 / 10</td>
<td>-</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>4.13</td>
<td>-</td>
<td>37.5 / 7.5</td>
<td>-</td>
<td>59.5</td>
<td>3</td>
</tr>
<tr>
<td>4.14</td>
<td>-</td>
<td>25 / 5</td>
<td>-</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>98 / 20</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>75 / 15</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>50 / 10</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>37.5 / 7.5</td>
<td>60.5</td>
<td>2</td>
</tr>
<tr>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>25 / 5</td>
<td>73</td>
<td>2</td>
</tr>
</tbody>
</table>

* 20% B40LN
** 20% C40L
*** 20% F38
**** Reference PE Reg
Fusabond E226

All blends mixed on blown film machine as s&p directly!!

Processing information (for CoPA):
- Weber 30 air cooled blown film,
- 30mm screw diameter, L/D = 25
- 50mm die diameter
- 40 µm total thickness
- Temperature profile:
 200°C/210°C/220°C/220°C
- Melt temperature 215-220°C

For PA 6 trials 20°C higher set-up
Morphologies III - Monolayer films (Dilution with compatibilizer)

19% B40LN / 5%F (# 1.4)

15% C40L / 3%F (# 4.11)

20% F38 / 2%F (# 2.7)

10% B40LN / 5%F (# 4.2)

10% B40LN / 3%F (# 1.10)

15% F38 / 2%F (# 4.5)
Comparison of mechanical properties in machine direction (MD) (Dilution with compatibilizer)

All components mixed as salt & pepper blends prior to blown film process directly!

** = 5% Fusabond E226
*** = 3% Fusabond E226
* = 2% Fusabond E226
Comparison of mechanical properties in transversal direction (TD) (Dilution with compatibilizer)

All components mixed as salt & pepper blends prior to blown film process directly!

** = 5% Fusabond E226
*** = 3% Fusabond E226
“” = 2% Fusabond E226
Major conclusions (Copolyamides, CoPA)

- PE/CoPA structures showed similar processability compared to PA6
 - < 10% CoPA in PE stream: processable without any compatibilizer
 - ≥ 10% CoPA in PE stream: compatibilizers needed for sufficient mechanical and optical performance
- 2-3% compatibilizer sufficient to homogenize structures up to 20% CoPA (vs. 5% for PA6)
 - possible due to lower melt points and less crystallinity of CoPA
- 3 possibilities to add compatibilizer (in original film, during regranulation, or in final film processing)
 - Nevertheless salt & pepper blending is easier due to lower melt points and/or crystallinity levels
- Lower regranulation temperature of ~ 200 – 220 °C provided satisfying results
- **NO drying steps** necessary
- Manufacturing of PE/CoPA regranulates might be easier compared to PE/PA6 by using standard single screw machinery. Resulting blends showed also quite acceptable visual and mechanical properties
Agenda

- Review of Part 1 “Mechanical recycling of PE/PA6 multilayer film waste”
- Project with Institute Cyclos-HTP (New results on PE/PA6 multilayer film waste)
- Is mechanical recycling of PE/CoPA multilayer film any different?
- How is the mechanical recycling of structures with both PA and EVOH?
- Outlook
What has been done in phase 3 (CoPA / EVOH structures)?

- Original film: PE / CoPA / EVOH Multilayer films with different Copolyamides (typical thermoforming structure)
- Regranulation (S Gran 95, NGR, Austria)
- Morphologies of regranulates analyzed
- Monolayer blown films (40µm) made from regranulate blends in semi-tech scale; dilution series with and w/o compatibilizer (during blown film process)
- Visual & morphological evaluation; analysis of mechanical properties of monolayer films
Film structures (180µm total)

- **Reference**: PE/PE/tie/EVOH***/tie/PE/PE
- **Trial C1**: C40LN*(18µm)/tie/PE/tie/C40LN(18µm)/EVOH**(15µm)/C40LN(18µm)/tie/PE
- **Trial C2**: C40LN*(18µm)/tie/PE***/tie/C40LN(18µm)/EVOH**(15µm)/C40LN(18µm)/tie/PE***/
- **Trial C3**: C37LC#(18µm)/tie/PE/tie/C37LC(18µm)/EVOH**(15µm)/C73LC(18µm)/tie/PE

* Ultramid® C40LN (BASF SE) = high viscosity (RV= 4,0), lubricated, nucleated PA 6/6.6, Tm: 189°C
** EVAL T101 (Kuraray EVAL Europe GmbH)
*** Retain 3000 (compatibilizer, Dow Chemicals Inc.), 2 x 2,5% incorporated
Ultramid® C37LC (BASF SE) = med-high viscosity (RV 3,7), lubricated PA 6/6.6, Tm: 182°C (nucleating MB added)
Morphologies IV - Comparison of regranulates

Regranulate C1 (C40LN)*

Regranulate C2 (C40LN-pre-compatibilized)**

Regranulate PE/EVOH#

* 33% C40LN / 8%EVOH
** 33% C40LN / 8%EVOH / 5%E226
5% EVOH, not dedicated reference
Recipe overview III – 1st PE/CoPA/EVOH screening

<table>
<thead>
<tr>
<th>Trials</th>
<th>Reg C1*(%/%CoPA)</th>
<th>Reg C2**(%/%CoPA)</th>
<th>Reg PE#(%)</th>
<th>Comp F## (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>100 / 34</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.2</td>
<td>-</td>
<td>50 / 17</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>6.3</td>
<td>-</td>
<td>25 / 8,5</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>6.4</td>
<td>50 / 17</td>
<td>-</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>6.5</td>
<td>25 / 8,5</td>
<td>-</td>
<td>72,5</td>
<td>2,5</td>
</tr>
<tr>
<td>6.6</td>
<td>25 / 8,5</td>
<td>-</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>6.7</td>
<td>8 / 2,72</td>
<td>-</td>
<td>92</td>
<td>-</td>
</tr>
</tbody>
</table>

* 34% C40LN / 8% EVOH
** 34% C40LN / 8% EVOH / 5% E226
PE Regranulate
Fusabond E226

All blends mixed on blown film machine as s&p directly!!

Processing information:
- Weber 30 air cooled blown film,
- 30mm screw diameter, L/D = 25
- 50mm die diameter
- 40 µm total thickness
- Temperature profile:
 200°C/210°C/210°C/210°C
- Melt temperature 210-215°C
First conclusions (PE/(Co)PA/EVOH structures)

- PE/CoPA/EVOH – film waste regranulated at temperature levels of ~ 200 – 210°C
- No degradation, degassing, discolouring etc. observed
- Blown film operation of monolayer films made out of regranulate blends also possible at reasonable temperatures (appr. 210°C) without additional drying!
- Microscopical investigations confirmed less impact of pre-compatibilization to morphologies
- Evaluation of monolayer films in progress, most likely reproduction trials necessary

Will be continued
Agenda

- Review of Part 1 “Mechanical recycling of PE/PA6 multilayer film waste”
- Project with Institute Cyclos-HTP (New results on PE/PA6 multilayer film waste)
- Is mechanical recycling of PE/CoPA multilayer film any different?
- How is the mechanical recycling of structures with both PA and EVOH?
- Outlook
Next steps

- Completion of cyclos-HTP trials (CoPA, general spec for compatibilizers) (in progress)
- Change of Recyclability categorization of PA (out of “contaminant”) in a recycling stream of packaging group “Film and LDPE“ in Minimum Standard* from German Central Agency Packaging Register (initiated)
- Industrial scale trials @ mechanical recyclers (in preparation)
- Reproduction trials using EVOH – containing barrier film structures (in progress)
- Recyclability study of representative laminates (via CEFLEX, in preparation)

* Minimum standard for determining the recyclability of packaging – edition 2020 according to § 21 Abs. 3 VerpackG
Thank you for listening!
Questions

- But please, feel free to ask questions using the chat.
- Please raise your hand, we will call you, unmute yourself and ask your question.
REGISTER NOW!
A JOINED-UP APPROACH TO SUSTAINABLE PACKAGING

Our series of web seminars covers every key topic you need to know about:

March 15 Circular economy at BASF
March 18 Mechanical recycling of polyamides in multilayer film structures
March 19 Ultramid®: Introduction to a family of polyamide 6 extrusion granulates
March 22 BASF calculates the CO₂ footprint of its products
March 23 New Ultradur® grades for thermoforming and injection-molding applications with tailor-made property profiles
March 24 Water-based ink technology: a more sustainable solution for flexible packaging
March 25 Pharmaboxes made from Styropor® Cycled™ go around the world